Saturday, November 7, 2009

What are electromagnetic fields?--Part2

The basics of wavelength and frequency
What makes the various forms of electromagnetic fields so different?One of the main characteristics which defines an electromagnetic field (EMF) is its frequency or its corresponding wavelength. Fields of different frequencies interact with the body in different ways. One can imagine electromagnetic waves as series of very regular waves that travel at an enormous speed, the speed of light. The frequency simply describes the number of oscillations or cycles per second, while the term wavelength describes the distance between one wave and the next. Hence wavelength and frequency are inseparably intertwined: the higher the frequency the shorter the wavelength.
A simple analogy should help to illustrate the concept: Tie a long rope to a door handle and keep hold of the free end. Moving it up and then down slowly will generate a single big wave; more rapid motion will generate a whole series of small waves. The length of the rope remains constant, therefore, the more waves you generate (higher frequency) the smaller will be the distance between them (shorter wavelength).
What is the difference between non-ionizing electromagnetic fields and ionising radiation?
Wavelength and frequency determine another important characteristic of electromagnetic fields: Electromagnetic waves are carried by particles called quanta. Quanta of higher frequency (shorter wavelength) waves carry more energy than lower frequency (longer wavelength) fields. Some electromagnetic waves carry so much energy per quantum that they have the ability to break bonds between molecules. In the electromagnetic spectrum, gamma rays given off by radioactive materials, cosmic rays and X-rays carry this property and are called 'ionizing radiation'. Fields whose quanta are insufficient to break molecular bonds are called 'non-ionizing radiation'. Man-made sources of electromagnetic fields that form a major part of industrialized life - electricity, microwaves and radiofrequency fields – are found at the relatively long wavelength and low frequency end of the electromagnetic spectrum and their quanta are unable to break chemical bonds.

No comments: